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Abstract
Optical nonlinearities are fundamental in several types of optical information processing
protocols. However, the high laser intensities needed for implementing phase nonlinearities using
conventional optical materials represent a challenge for nonlinear optics in the few-photon regime.
We introduce an infrared cavity quantum electrodynamics (QED) approach for imprinting
nonlinear phase shifts on individual THz pulses in reflection setups, conditional on the input
power. Power-dependent phase shifts on the order of 0.1π can be achieved with femtosecond
pulses of only a few µW input power. The proposed scheme involves a small number of
intersubband quantum well transition dipoles evanescently coupled to the near field of an infrared
resonator. The field evolution is nonlinear due to the dynamical transfer of spectral anharmonicity
from material dipoles to the infrared vacuum, through an effective dipolar chirping mechanism
that transiently detunes the quantum well transitions from the vacuum field, leading to photon
blockade. We develop analytical theory that describes the dependence of the imprinted nonlinear
phase shift on relevant physical parameters. For a pair of quantum well dipoles, the phase control
scheme is shown to be robust with respect to inhomogeneities in the dipole transition frequencies
and relaxation rates. Numerical results based on the Lindblad quantum master equation validate
the theory in the regime where the material dipoles are populated up to the second excitation
manifold. In contrast with conventional QED schemes for phase control that require strong
light–matter interaction, the proposed phase nonlinearity works best in weak coupling, increasing
the prospects for its experimental realization using current nanophotonic technology.

1. Introduction

Cavity quantum electrodynamics (QED) is one of the building blocks of quantum technology [1, 2]. Strong
light–matter interaction between dipolar material resonances and the electromagnetic vacuum of a cavity has
been used for protecting and manipulating quantum information across the entire frequency spectrum using
neutral atoms [3, 4], semiconductors [5–8], and superconducting artificial atoms [9–13]. Cavity QED
observables such as the vacuum Rabi splitting have also been demonstrated with material dipoles in infrared
(THz) resonators at room temperature using intersubband transitions [14–17] and molecular vibrations
[18–23], for applications such as infrared photodetection [24] and controlled chemistry [25, 26]. The
enhancement of the spontaneous emission rate of material dipoles in a weakly coupled cavity via the Purcell
effect [27–29] has been used over different frequency regimes for reservoir engineering [30, 31], dipole
cooling [32, 33] and quantum state preparation [34]. In infrared cavities, the Purcell effect can be an effective
tool for studying the relaxation dynamics of THz transitions in materials [35–37], given the negligible
radioactive decay rates at these frequencies in comparison with non-radioactive relaxation processes [38, 39].
The direct linear measurement of confined infrared field dynamics in a weakly coupled dipole-cavity system
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[40] can thus provide information about infrared transitions that otherwise would only be accessible using
ultrasfast nonlinear spectroscopy [41, 42].

Cavity QED also enables the manipulation of external electromagnetic fields that drive a coupled
cavity-dipole system [5]. Implementing conditional phase shifts via intracavity light–matter interaction can
be used for quantum information processing [43–45], as demonstrated using atomic dipoles [46, 47] and
quantum dots [48, 49] in optical cavities. In analogy with classical phase modulation processes in bulk
nonlinear optical materials [50], which depend on the anharmonic response of the medium to strong fields
[51], cavity-assisted phase shifts are possible due to photon blockade effects that arise due to intrinsic
spectral anharmonicities of strongly coupled light-matter systems [52, 53]. In the infrared regime, despite
the growing interest in cavity QED phenomena with molecular vibrations [25, 26, 40, 54–59] and
semiconductors [16, 60–62], viable physical mechanisms for implementing conditional phase dynamics with
infrared fields have yet to be developed.

Here we study a previously unexplored form of dynamical photon blockade effect that can be used for
imprinting intensity-dependent phase shifts on electromagnetic pulses at THz frequencies (mid-infrared).
The physical mechanism that supports the phase nonlinearity involves an effective transfer of the spectral
anharmonicity of suitable few-level systems to the near field of an infrared resonator in weak coupling. To
emphasize the feasibility of implementing the proposed phase nonlinearity using current technology, the
relevant frequency scales of the problem are specified according to recent cavity QED experiments with
intersubband transitions of multi quantum wells (MQWs) embedded in infrared nanoresonators [16]. The
proposed scheme should be simpler with MQW than ensembles of molecular vibrations [36], because the
number of dipoles is much smaller and the spectral anharmonicity much higher. By driving the resonator
with a moderately strong femtosecond laser pulse, the matter-induced phase nonlinearity can be retrieved
from the free-induction decay (FID) of the resonator near field Enf(t) using linear heterodyne spectroscopy
techniques with femtosecond time resolution [35, 37, 63–67].

The article is organized as follows: section 2 describes the model for a MQW coupled to a common open
cavity field. Section 3 develops a mean-field theory of the dynamical chirping effect that gives rise to the
infrared phase nonlinearity. Section 4 discusses the scaling of the predicted nonlinear phase shift with the
physical parameters of the problem for identical intersubband dipoles. Section 5 shows that the results are
robust with respect to dipole inhomogeneities. Numerical validation of the theory is given in section 6 using
a Lindblad quantum master equation description of the system dynamics. We summarize and discuss
perspectives of this work in the Conclusions.

2. Cavity QEDmodel of anharmonic semiconductor dipoles

We consider a small number N of quantum wells located within the near field of a resonant infrared
nanoantenna, as illustrated in figure 1. The quantum wells do not interact with each other and have discrete
intersubband energy levels with transition frequencies in the THz regime [68]. The bare Hamiltonian of the
MQW system is a collection of anharmonic quantum Kerr oscillators ( h̄≡ 1 throughout)

Ĥn = ωnb̂
†
nb̂n −Unb̂

†
nb̂

†
nb̂nb̂n, (1)

where b̂n is the annihilation operator of the nth quantum well dipole, ωn is the fundamental frequency and
Un the anharmonicity parameter. The geometry of the quantum well structure determines the confined
charge carriers potential and the spectral anharmonicity [69].

Projecting into a complete eigenbasis |νn⟩, equation (1) can be written as Ĥn =
∑

ν Eνn |νn⟩⟨νn|, with
eigenvalues Eνn = ωnνn −Un(ν

2
n − νn). The energy difference between consecutive levels of the nth quantum

well is Eν+1 − Eν = ωn − 2Unν. The nonlinear parameter Un thus lowers the energy spacing of the 1→ 2
excitation by∆= 2Un relative to the fundamental frequency. In comparison with molecular vibrations, for
which∆∼ 10− 40 cm−1 [70, 71], multi-quantum well dipoles enable much larger anharmonicities, with
Un ∼ 100− 300 cm−1 [16].

The anharmonic quantum wells couple to a common resonator near field â in the rotating wave
approximation are described by the Hamiltonian

Ĥ= ωcâ
†â+

N∑
n=1

[
Ĥn + gn

(
âb̂†n + â†b̂n

)]
, (2)

where ωc is the resonant field mode frequency and gn = E0dn is the light-matter coupling strength. The latter
depends on the square-root amplitude of the vacuum fluctuations E0 and the transition dipole moment dn.
For simplicity, we assume transition dipoles are state-independent (dn = d0) but other choices do not
qualitatively affect the results.
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Figure 1. Schematic picture of a MQW in a driven open infrared nanocavity. Two quantum wells forming a MQW with
fundamental frequency ω0 =∆10. The 0→ 1 and 1→ 2 transitions are coupled to the near-field of an open nanocavity with
frequency ωc. The coupled light-matter system is driven by an incoming laser pulse with field profile Ein(t). The photons that leak
out the nanocavity on sub-picosecond time scales at rate κ generate the free-induction decay (FID) signal encoded in the
outgoing field Eout(t).

We calculate the dissipative dynamics of the system in the presence of a driving pulse according to the
Lindblad quantum master equation

d

dt
ρ̂=−ı̇

[
Ĥ+ Ĥd (t) , ρ̂

]
+Lκ [ρ̂] +Lγ [ρ̂] , (3)

where ρ̂ is the density matrix of the total cavity-MQW system. Lκ[ρ̂] and Lγ [ρ̂] are photonic and material
relaxation superoperators given by

Lκ [ρ̂] =
κ

2

(
2 âρ̂â† − â†â ρ̂− ρ̂ â†â

)
, (4)

Lγ [ρ̂] =
N∑

n=1

γn
2

(
2 b̂nρ̂b̂

†
n − b̂†nb̂n ρ̂− ρ̂ b̂†nb̂n

)
, (5)

where κ and γn are the decay rates of photonic and nth quantum well modes, respectively. The decoherence
processes encoded in γn are mainly given by the interaction between MQW and the thermalized phonon
bath of the semiconductor structure [72]. For the open cavity field, the main source of decoherence is non
radioactive decay in the metal [73], as well as radioactive losses. In this work, the light-matter system is
considered to be in the weak coupling regime, broadly defined by the absence of vacuum Rabi splitting in
linear transmission [36], which results from a small cooperativity parameter Ng2/κγ < 1. The
time-dependent Hamiltonian Ĥd(t) that describes the driving pulse is given by

Ĥd (t) = F0φ(t)
(
âeiωdt + â†e−iωdt

)
, (6)

with the Gaussian pulse envelope φ(t) = exp[−(t− t0)2/(2T2)] and carrier frequency ωd. |F0|2 is
proportional to the incoming photon flux5, t0 is the pulse center time and T is the pulse duration.

3. Mean-field nonlinear chirping model

We assume that the system dynamics involves only the lowest three energy levels of the quantum wells
(i.e. νmax = 2). To ensure that higher energy levels do not contribute significantly to the system evolution, we
assume the driving condition F0/κ < 1, which is not necessarily weak driving in the sense that the coupled
system response can still be nonlinear, but the photon occupation in the near field remains below unity on
average. Mean-field equations of motion for identical quantum wells can be obtained from equation (3) for
light and matter coherences, to give coupled non-linear system

d

dt
⟨â⟩=−

(κ
2
+ iωc

)
⟨â⟩− i

√
Ng⟨B̂0⟩− iF̃d (t) (7)

d

dt
⟨B̂0⟩=−

[
γ

2
+ i

(
ω0 −

2U

N
|⟨B̂0⟩|2

)]
⟨B̂0⟩− i

√
Ng⟨â⟩, (8)

where B̂0 = (1/
√
N)
∑

n b̂n is the bright collective oscillator mode of fundamental frequency ω0 and decay
rate γ. The driving parameter is F̃d = F0φ(t)exp(−iωdt). For simplicity we consider that all quantum wells

5 The stationary photon flux in the continuous wave regime of an empty cavity with radiative decay rate κ isΦflux = κ⟨â†â⟩= 4|F0|2/κ.
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Figure 2. Dipolar FID signals. (a) Real part of the material collective coherence Re⟨B̂0(t)⟩ for two identical quantum wells
coupled to a common field mode. The antenna is driven by a laser pulse with carrier frequency ωd, pulse duration
T= 155 fs, centered at t0 = 600 fs. Pulse strength parameters F0 = 0.01κ and F0 = 0.20κ are assumed. Additional parameters are
{ω0,κ,γ,U,

√
Ng}= {40.0,12.0,0.6,0.6,1.0} THz. (b) Zoom of the FID signals shown in (a) to visualize the time delay δτ

generated after the pulse is over. (c) Time delay ratio calculated as the time difference between peaks of the material collective
coherence, for γ = 0.6THz (blue curve, different material and nanocavity bandwidths) and γ = 10.0THz (black curve,
comparable bandwidths). The dashed red line shows the Gaussian pulse profile.

are equally coupled to the field mode and have the same anharmonicity, by setting gn = g and Un = U. For
homogeneous systems, the N − 1 dark collective modes B̂α = (1/

√
N)
∑

n cα,nb̂n, with cα,n = exp(i2αn/N),
evolve completely decoupled from equations (7) and (8) (see appendix A). The Kerr nonlinearity generates
an effective dipole chirping effect, with instantaneous frequency

ω ′
0 (t) = ω0 −

2U

N
|⟨B̂0 (t)⟩|2. (9)

This is red shifted from the fundamental resonance by an amount proportional to the bright mode
occupation. The nonlinearity is proportional to the anharmonicity parameter U and is small for large N
[36]. The transient red shift occurs while the system is driven by the laser pulse, which populates B̂0(t), and is
thus proportional to the photon flux parameter F0.

We solve equations (7) and (8) analytically to gain insight on the chirping effect. We assume that the
bandwidth of the dipole resonance is much smaller than the antenna bandwidth, i.e. we work in the weak
coupling regime, where κ≫ γ and 4Ng2/κγ < 1. By adiabaticaly eliminating the antenna field from the
dynamics, the evolution of bright mode after the pulse is over is given by

⟨B̂0 (t)⟩= Boffe
− γ̃

2 (t−toff)eiϕ(t) (10)

where toff is the pulse turn-off time. The phase evolves as

ϕ(t) = ϕoff +
2UB2

off

Nγ̃

{
1− e−γ̃(t−toff)

}
, (11)

where γ̃ = γ(1+ 4Ng2/κγ) is the Purcell-enhanced dipole decay rate [37, 74] and Boff = |⟨B̂0(toff)⟩|.
Defining τ = t− toff, in the long time regime, τ γ̃≫ 1, equation (11) gives the stationary relative phase

∆ϕss = ϕss −ϕoff =
2UB2

off

Nγ̃
, (12)

which depends quadratically on the laser strength, through the implicit linear dependence of Boff on F0. The
derivation of equation (11) can be found in appendix B. In the limiting cases of harmonic oscillators
(U = 0), thermodynamic limit (N→∞), or linear response (F0/κ≪ 1), the relative phase is negligible
(∆ϕss ≈ 0). Molecular ensembles have low anharmonicites, and have been shown to require higher pulse
strengths to produce finite relative phases [36] than the ones discussed here.

Figures 2(a) and (b) show the evolution of the dipole coherence Re[⟨B̂0(t)⟩] obtained by solving
equations (7)–(8) numerically with parameters relevant for experimental implementations [16, 69].
Figure 2(b) shows the time delay δτ produced by a strong driving pulse (F0/κ= 0.2) on the FID signal, in
comparison with weak pulses. The delay δτ in time domain results in the relative phase from equation (12).
Recent experiments with infrared nanoantennas have the femtosecond temporal resolution necessary to
measure δτ [36, 37].

Figure 2(c) shows the evolution of δτ for two scenarios. For long dipole lifetimes (γ≪ κ),
i.e. narrowband MQW response, the time delay of the FID signal remains after the driving pulse is over. On
the contrary, when γ ∼ κ the time delay disappears after the pulse ends. The system thus requires long dipole
dephasing times to imprint a stationary time delay in the near field once the driving pulse is turned off.

4



New J. Phys. 26 (2024) 013003 M Arias et al

Figure 3. Intensity-dependent phase spectrum of the scattered field. (a) Relative phase spectrum∆Φ(ω) for F0 = 0.2κ and
different values of U/γ. (b) Nonlinear phase spectrum∆Φ(ω0)/π at ω0 as a function of the laser strength parameter F0/κ.
Circle symbols correspond to an analytical quadratic scaling with fit parameter α= 3.5. Both panels are calculated using
equation (14) for different ratios U/γ. Additional parameters are {ω0,κ,γ,

√
Ng}= {40.0,12.0,0.6,1.0} THz.

4. Nonlinear phase shift in the frequency domain

The time delay in the collective material coherence ⟨B̂0(t)⟩ from figure 2 is transferred to the photonic
coherence ⟨â(t)⟩, which ultimately gives the observable FID signal in heterodyne measurements [36, 37]. We
define the Fourier transform of the field coherence as

⟨â(ω)⟩= 1√
2π

ˆ ∞

−∞
dt⟨â(t)⟩eiωt, (13)

and calculate the phase response Φ(ω) of the FID signal as

Φ(ω) = arctan

(
Im [⟨â(ω)⟩]
Re [⟨â(ω)⟩]

)
. (14)

The Fourier transform is taken for the post-pulse FID signal. Figure 3(a) shows the phase spectrum for
different values of the parameter U/γ, at fixed driving strength (F0 = 0.2κ). The relative phase in Fourier
space is negligible for the limiting cases discussed above. In the case of anharmonic MQWs, the relative phase
∆Φ(ω) = Φ(ω)−Φharm increases as the anharmonicity parameter U/γ grows for fixed F0, with Φharm given
by relative phase obtained under harmonic conditions.

To gain insight on the behavior of the relative nonlinear phase, we use equation (10) to calculate∆Φ(ω)
analytically in the Fourier domain. We obtain

∆Φ(ω0) = α
2U

Nγ̃

(
F0
κ

)2

, (15)

where the numerical parameter α comes from the proportionality relation |⟨B̂0(t)⟩| ∝ F0 and the fact that
ϕoff in equation (11) is also a nonlinear phase that grows with the dipole amplitude before the driving pulse
is off. The derivation of equation (15) and additional details can be found in appendix B. Figure 3(b) shows
the analytical fitting and numerical calculations for the nonlinear phase shift at the fundamental frequency
ω0 as a function of the laser intensity parameter F0/κ, for different values of U/γ. In agreement with
previous works [75, 76], in the weak driving limit (F0/κ≪ 1) we obtain the linear response regime, i.e.
∆Φ(ω0)≈ 0 from equation (15), which is also demonstrated numerically in figure 3(b). In the low
anharmonicity regime U/γ < 1, the nonlinear phase has a clear quadratic dependence on F0, while for
strong anharmonicities U/γ ≳ 1,∆Φ(ω0) is quadratic for only up to a certain driving strength. Beyond this
point, higher energy levels (ν > 2) start to contribute with the dynamics of the system and the adiabatic
elimination approach used to derive equation (15) breaks down.

5. Nonlinear phase shift enhancement via dark states

The dynamics in the totally symmetric case with identical QW dipoles only involves the field and bright
collective modes without the influence of the dark manifold. For a pair of inhomogeneous QWs (N = 2), the
equation of motion for the bright mode ⟨B̂0⟩ should be extended to read

5
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Figure 4. Nonlinear phase shift enhancement via dipole inhomogeneity. Nonlinear phase shift at ω0 as a function of the driving
ratio F0/κ for the anharmonicity parameter U/γ1 = 0.5. (a) For ω1 = ω2 = ω0 and γ1 ̸= γ2. (b) For ω0 = ω1 ̸= ω2 and γ1 = γ2.
Additional parameters are {ω0,κ,γ1,

√
Ng}= {40.0,12.0,0.6,1.0} THz.

d

dt
⟨B̂0⟩=−

( γ̄
2
+ iω̄ (t)

)
⟨B̂0⟩−

(
∆γ

2
+ i∆ω (t)

)
⟨B̂1⟩− i

√
Ng⟨â⟩ (16)

where ⟨B̂1⟩= (−⟨b̂1⟩+ ⟨b̂2⟩)/
√
2 is the dark mode for the pair of dipoles, γ̄ = (γ1 + γ2)/2 and

∆γ = (γ2 − γ1)/2 are the average value and the mismatch of decay rates, respectively. The instantaneous
average frequency is now given by

ω̄ (t) = ω̄−U
(
|⟨B̂0 (t)⟩|2 + |⟨B̂1 (t)⟩|2

)
(17)

and the frequency mismatch by

∆ω (t) = ∆ω− 2URe
[
⟨B̂0 (t)⟩∗⟨B̂1 (t)⟩

]
, (18)

where ω̄ = (ω1 +ω2)/2 and∆ω = (ω2 −ω1)/2. The coupling of the dark mode ⟨B̂1⟩ with the bright mode
influences the dynamics of the system. It is clear that in the totally symmetric case (∆γ =∆ω = 0), bright
and dark modes are decoupled and equation (16) reduces to equation (8). The positive additive contribution
|⟨B̂1⟩|2 to the instantaneous dipole frequency suggests that the dark manifold enhances the nonlinear phase
shift. The derivation of equation (16) can be found in appendix C.

Figure 4 shows the nonlinear phase spectrum of ⟨â(ω)⟩ evaluated at the fundamental frequency ω0 for
two inhomogeneus scenarios. First, we set equal fundamental frequencies with variations in the decay rates
of the QWs, i.e. ω1 = ω2 = ω0 and γ1 ̸= γ2. In figure 4(a) we find both enhancement and reduction of the
nonlinear phase for U= 0.5γ1. Enhancement is reached for∆γ < 0, which is due to a reduction of the
effective decay rate γ̄ associated with bright mode in equation (16). In the opposite case, i.e. for γ2 > γ1,
∆Φ(ω0) decreases due to the increased decay rate of the bright mode. The second scenario considers one
QW detuned with respect to the other but both having equal decay rates, i.e. ω1 ̸= ω2 and γ1 = γ2. The
results are shown in figure 4(b). In this case, the small blue and red detuning of one of the quantum wells
gives a nonlinear phase enhancement. However, for very large detunings (∆ω/ω0 > 0.1) the nonlinear phase
tends to the homogeneous limit (∆ω = 0), as the detuned quantum well becomes effectively decoupled from
the field.

6. Validity of the mean-field theory

We calculate the evolution of the total density matrix by solving the Lindblad quantum master equation in
equation (3) by using QuTiP [77, 78] to explore the regime of validity of the mean-field theory for a pair of
anharmonic quantum well dipoles. The evolution of the density matrix converges with a truncated Hilbert
space that includes up to νmax = 4 intersubband excitations per quantum well and nmax = 5 photons, which
results in a Hilbert space dimension of d= 150.

Figures 5(a) and (b) show the nonlinear phase shift∆Φ(ω0) as a function of the laser strength parameter
F0/κ predicted by the Lindblad QME for two different values of the anharmonicity: U= 0.5γ1 and

6
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Figure 5. Fully quantum validation of the nonlinear phase shift. Relative nonlinear phase shift as a function of laser strength
parameter F0/κ found in the mean-field approximation (solid lines) and by solving the Lindblad quantum master equation
(dashed lines) for different inhomogeneous scenarios and for (a) U/γ1 = 0.5 and (b) U/γ1 = 2.0. (c) Population dynamics of the
second excited energy level P2 for F0 = 0.3κ and different values of the anharmonicity parameter U/γ1. Additional parameters
for all panels are {ω0,κ,γ1,

√
Ng}= {40.0,12.0,0.6,1.0} THz. The mean-field approximation and the Lindblad quantum

master are implemented with the same parameters.

U= 2.0γ1. For U= 0.5γ1, both mean-field (solid lines) and fully quantum (dashed lines) calculations agree
up to a factor of two approximately (see additional comparisons in appendix D). However,∆Φ(ω0) in the
mean-field approach is overestimated for U= 2.0γ1, where the nonlinear phase is negligible up to
F0/κ≈ 0.4, then increases for higher laser intensities. The latter is due to the large detuning between cavity
frequency ωc and∆21. As a consequence, anharmonic blockade is observed for the intersubband state ν= 2
such that the higher level does not participate in the dynamics, causing the dipole to behave effectively as a
harmonic oscillator. In figure 5(c), we show the population of the ν= 2 level (P2) for F0/κ= 0.3 and
different values of the anharmonicity parameter U/γ1. P2 is suppressed as U increases due to the blockade
effect [52, 53, 79]. The mean-field theory is accurate for weak pulses (F0/κ < 0.1) independent on the
anharmonicity parameter U/γ and, for stronger pulses with anharmonicities lower than dissipation rate of
MQWs (U/γ < 1.0).

7. Discussion and conclusion

In this work, we described a novel dynamical photon blockade mechanism in THz cavity QED that can be
used for imprinting power-dependent phase shifts on the electromagnetic response of a coupled cavity-dipole
system. We develop analytical quantum mechanical theory to model FID signals of a pulse-driven cavity
system, using parameters that are relevant for quantum well intersubband transitions in mid-infrared
resonators [16]. For N quantum wells within the near field of the driven resonator, the theory shows that
using only a moderately strong pulse that drives a small fraction of the intersubband level population to the
second excitation manifold, a stationary phase shift proportional to the spectral anharmonicity parameter
U/Nγ and the photon flux of the pulse, can be imprinted on the FID response of the near field, which can
then be retrieved using time-domain spectroscopic techniques [40]. We point out that the relative phase shift
is unaffected if excited energy levels higher than ν > 2 are populated, which occurs by driving the resonator
with laser pulses strengths higher than F0/κ > 0.5. For experimentally relevant system parameters [16], with
photon flux Φflux in the stationary regime and setting F0 = 0.5κ, nonlinear phase shifts of order of 1 radian
are predicted for a single quantum well using a single sub-picosecond pulse of a few µW.

The predicted phase nonlinearity can be physically understood as a result of laser-induced dipole effect
that dynamically detunes the cavity field with respect to the 1→ 2 intersubband transition, caused by
population driven between the first and second excited levels of the anharmonic quantum well spectrum.
The analytical model is validated numerically using density matrix solutions of the corresponding Lindblad
quantum master equation. Notably, the proposed dipole chirping mechanism only occurs for cavity fields
that are much shorter lived than the THz dipole resonance (bad cavity limit), as is the case in several
nanophotonic setups [16, 37]. Moreover, the phase imprinting scheme works best in the weak coupling
regime, contrary to conventional photon blockade effects developed for optical cavity QED, which require
strong coupling conditions [53, 80].

Our work demonstrates the feasibility of implementing nonlinear phase operations at THz frequencies
using current available nanocavities [16, 37, 40] and contributes to the development of quantum optics in
the high-THz regime [69, 80], which can enable fundamental studies of cavity QED[81, 82], material and
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molecular spectroscopy [40, 62, 83], and controlled chemistry in confined electromagnetic environments
[25, 26]. Extensions of this work to the analysis of THz and infrared pulses with non-classical field statistics
[84, 85] could open further possibilities for developing ultrafast quantum information processing at room
temperature.
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Appendix A. Mean-field approach forN identical dipoles

The density matrix of the light-matter system ρ̂(t) evolves according to the quantum master equation in
Lindblad form

d

dt
ρ̂=−i

[
Ĥ+ Ĥd (t) , ρ̂

]
+Lκ [ρ̂] +Lγ [ρ̂] , (A1)

where Ĥ is the Hamiltonian of the system in equation (2), Ĥd(t) is the time-dependent Hamiltonian of the
laser pulse that drives the nanocavity in equation (6) and the Lindblad superoperators are given by [86, 87]

Lκ [ρ̂] =
κ

2

(
2 âρ̂â† − â†â ρ̂− ρ̂ â†â

)
, (A2)

Lγ [ρ̂] =
N∑

n=1

γn
2

(
2 b̂nρ̂b̂

†
n − b̂†nb̂n ρ̂− ρ̂ b̂†nb̂n

)
, (A3)

κ is the resonator field decay rate and γn is the MQW relaxation rate into a local reservoir. â and b̂n are the
annihilation operators of the field mode and the nth quantum well, respectively.

The local operators can be expressed as a linear combination of the collective modes B̂α as

b̂n =
1√
N

N−1∑
α=0

exp

(
− ı̇2παn

N

)
B̂α. (A4)

Thus, the Lindblad superoperators for the collective modes considering homogeneous MQWs (with γn = γ)
are given by

Lγ [ρ̂] =
γ

2

N−1∑
α=0

(
2 B̂αρ̂B̂

†
α −

{
B̂†
αB̂α , ρ̂

})
, (A5)

where {Â, B̂} is the anticommutator between arbitrary operators Â and B̂.
The exact equations of motion for the field and bright collective matter coherences in the Schrödinger

picture are given by

d

dt
⟨â⟩=−

(κ
2
+ iωc

)
⟨â⟩− i

√
Ng⟨B̂0⟩− iF̃d (t) , (A6)

8
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d

dt
⟨B̂0⟩=−

(γ
2
+ iω0

)
⟨B̂0⟩− i

√
Ng⟨â⟩+ i

2U

N

N−1∑
β,η=0

⟨B̂†
βB̂β−η(modN)B̂η⟩, (A7)

with F̃d(t) = F0φ(t)e−ı̇ωdt, ⟨B̂α⟩=
∑

n e
i2παn/NTr[b̂nρ̂(t)]/

√
N and ξ(modN) is a modular arithmetic for ξ

with modulo N, ensuring the cyclicity of the permutation indexes (for example, for β= 0 and η= 1,
0− 1(modN) = N− 1). We approximate the expansion of the triple operators in equation (A7) by only
using the first term, with β = η = 0, and factorizing it as ⟨B̂†

0B̂0B̂0⟩ ≈ ⟨B̂0⟩∗⟨B̂0⟩⟨B̂0⟩. This fully-factorized
ansatz leads to closed equations of motion for the first moments ⟨â⟩ and ⟨B̂0⟩ that can describe the nonlinear
response of the system. We assess the validity of this approximation in section 6 by solving the full quantum
master equation numerically. As expected, the mean-field ansatz is only accurate for weak anharmonicity
parameters U/Nγ, where higher order moments that are present in the fully quantum calculations do not
contribute significantly.

Appendix B. Adiabatic elimination of the antenna dynamics

In the bad cavity limit, we can adiabatically eliminate the dynamics of the single field mode (d⟨â(t)⟩/dt→ 0)
since κ≫ γ and (κ− γ)/4>

√
Ng. We reduce the equations of motion to a single equation for bright

collective matter coherence B̂0 which contains the influence of the open cavity mode. Hence, equation (A6)
in the rotating frame of the cavity frequency ωc on resonance with fundamental frequency ω0 reduces to

⟨
ãad (t)

⟩
≈−i

2
√
Ng

κ
⟨B̃ad

0 (t)⟩− i
2

κ
Fd (t) , (B1)

and solving for ⟨B̂0⟩

d

dt
⟨B̃ad

0 (t)⟩=− γ̃
2
⟨B̃ad

0 (t)⟩− 2
√
Ng

κ
Fd (t)+ i

2U

N
|⟨B̃ad

0 (t)⟩|2⟨B̃ad
0 (t)⟩, (B2)

with the renormalized decay rate of the dipole coherence γ̃ = γ(1+ 4Ng2/κγ), which is commonly known as
the Purcell factor [36].

Equation (B2) with Fd(t) = 0 is known in non-linear hydrodynamics as the Stuart-Landau oscillator
equation [88, 89]. The laser pulse at a given time t= toff turns off and equation (B2) can be solved
analytically by a slow variation of the dipole coherence in polar form as ⟨B̃ad

0 (t)⟩= |⟨B̃ad
0 (t)⟩|eiϕ(t). Thus, the

equations of motion for the amplitude and phase can be written as

d

dt
|⟨B̃ad

0 (t)⟩|=− γ̃
2
|⟨B̃ad

0 (t)⟩| (B3)

d

dt
ϕ(t) = 2

U

N
|⟨B̃ad

0 (t)⟩|2, (B4)

where their corresponding solutions are given by

|⟨B̃ad
0 (t)⟩|= Boffe

− γ̃
2 (t−toff) (B5)

ϕ(t) = ϕoff +
2UB2

off

Nγ̃

{
1− e−γ̃(t−toff)

}
, (B6)

with Boff = |⟨B̃ad
0 (toff)⟩| and ϕoff = ϕ(toff). The dipole coherence in the rotating frame of the laser evolves as

⟨B̂ad
0 (t)⟩= ⟨B̂ad

0 (toff)⟩e−
γ̃
2 (t−toff)e−iω0(t−toff) exp [i∆ϕss (1− exp [−γ̃ (t− toff)])] , (B7)

where∆ϕss = ϕss −ϕoff and ⟨B̂ad
0 (toff)⟩= Boffeiϕoff . The exponential that depends on the relative phase∆ϕ in

equation (B7) evidences the nonlinear contributions, instead of the solution with harmonic MQWs or in the
weak driving regime. To clarify, the analogous solution of the dipole coherence with U = 0 [B̂ad

0,L(t)] for
t⩾ toff is given by

⟨B̂ad
0,L (t)⟩=−β (T) 2

√
NgF0
κ

e−(γ̃/2+iω0)t (B8)
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where the factor β(T) depends on the envelope functional shape, and the stationary phase∆ϕss = 0 due to
the system evolves with a constant phase ϕss = ϕoff.

In the case of the phase, equation (B6) describes a stationary phase ϕ(t) = ϕss in the long time regime
(t≫ toff), which is given by

ϕss = ϕoff +
2UB2

off

Nγ̃
. (B9)

Note that the expression is quadratic respect to amplitude Boff and constant for harmonic MQWs (U = 0).

B.1. Relation between the dipole and cavity phase shifts
We measure the FID signal in the laboratory, which is related with the field mode coherence ⟨â⟩. Here, we
connect the phase shift that can be obtained from experiments with the phase from the dipole coherence. We
define the relative nonlinear phase shift in frequency domain at ω0 in terms of the Fourier transform of the
cavity coherence, ⟨â(ω)⟩= F [⟨â(t)⟩](ω), as

∆Φ(ω0) = Φ(ω0)−Φharm (ω0) , (B10)

where,

Φ(ω) = arctan

(
Im [⟨â(ω)⟩]
Re [⟨â(ω)⟩]

)
, (B11)

and Φharm = limF0/κ≪1Φ(ω0). The latter is valid since the response of the anharmonic dipole oscillator
under weak driving conditions F0/κ≪ 1 or in the limit of negligible anharmonicity U/γ→ 0 is equivalent
to the linear response, as it is shown in equation (B9). Assuming the same toff for the cavity and dipole
coherences, the equations of motion for the field coherence and phase in frequency domain are given by

⟨â(ω)⟩=−i
√
Ng⟨B̂0 (ω)⟩

1

κ/2− i(ω−ωc)
, (B12)

Φ(ω0) = Φ(0) (ω0)+ arctan

(
ω0 −ωc

κ/2

)
− π

2
, (B13)

with

Φ(0) (ω0) = arctan

(
Im
[
⟨B̂0 (ω0)⟩

]
Re
[
⟨B̂0 (ω0)⟩

]) .
The second and third term in equation (B13) are independent on anharmonicity parameter U/κ and driving
strength F0/κ. Thus, in analogy with equation (B10), i.e. considering that the relative phase shift is given in
terms of the linear response and nonlinear contributions, we can write∆Φ(ω0) as a function of the dipole
coherence instead of the field mode response as

∆Φ(ω0) = ∆Φ(0) (ω0) = Φ(0) (ω0)−Φ
(0)
harm (ω0) , (B14)

where Φ(0)
harm(ω0) = limF0/κ≪1Φ

(0)(ω0).

B.2. Nonlinear phase shift ansatz for an arbitrary driving pulse
We introduce an ansatz for the relative phase since the amplitude |Boff| cannot be defined for general driving
pulses. We define the nonlinear phase shift∆Φ at frequency ω0 as

∆Φ(ω0) = α
2U

Nγ̃

(
F0
κ

)2

, (B15)

10
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where α is a phenomenological parameter to be explored. The definition in equation (B15) is possible
considering that the squared amplitude of the dipole coherence (equation (B5)) and the stationary phase
(equation (B9)) grow proportional to the square of the driving strength for the ratio F0/κ < 1. Further,
numerical results in figure 3 suggest the quadratic dependence.

Appendix C. Mean-field chirping model for asymmetric quantumwells

From the local quantum master equation, the mean-field equations of motion for the coherences of the
inhomogeneous quantum wells (b̂1 and b̂2) and field mode â are given by

d

dt
⟨â⟩=−

(κ
2
+ iωc

)
⟨â⟩− i g

(
⟨b̂1⟩+ ⟨b̂2⟩

)
− iF̃d (t) , (C1)

d

dt
⟨b̂1⟩=−

(γ1
2
+ iω1

)
⟨b̂1⟩− i g⟨â⟩+ i2U|⟨b̂1⟩|2⟨b̂1⟩, (C2)

d

dt
⟨b̂2⟩=−

(γ2
2
+ iω2

)
⟨b̂2⟩− i g⟨â⟩+ i2U|⟨b̂2⟩|2⟨b̂2⟩. (C3)

We set equal light-matter coupling strengths g= g1 = g2 and anharmonicity parameters U= U1 = U2. By
replacing the bright B̂0 = (b̂1 + b̂2)/

√
2 and dark B̂1 = (−b̂1 + b̂2)/

√
2 modes, we obtain

d

dt
⟨â⟩=−

(κ
2
+ iωc

)
⟨â⟩− i

√
Ng⟨B̂0⟩− iF̃d (t) , (C4)

d

dt
⟨B̂0⟩=−

( γ̄
2
+ iω̄ (t)

)
⟨B̂0⟩−

(
∆γ

2
+ i∆ω (t)

)
⟨B̂1⟩− i

√
Ng⟨â⟩, (C5)

d

dt
⟨B̂1⟩=−

( γ̄
2
+ iω̄ (t)

)
⟨B̂1⟩−

(
∆γ

2
+ i∆ω (t)

)
⟨B̂0⟩, (C6)

with

ω̄ (t) = ω̄−U
(
|⟨B̂0 (t)⟩|2 + |⟨B̂1 (t)⟩|2

)
,

and

∆ω (t) = ∆ω− 2URe
[
⟨B̂0 (t)⟩∗⟨B̂1 (t)⟩

]
,

where ζ̄ = (ζ1 + ζ2)/2 and∆ζ = (ζ2 − ζ1)/2, with ζ = {γ,ω}, are the average and mismatch values.

Appendix D. Comparison of mean-field and lindblad quantummaster equation

The accuracy of the mean-field results for the nonlinear phase shift∆ΦNL in general depends on pulse
strength, the degree dipole inhomogeneity and dipole anharmonicity. We assess the parameter dependence of
the model predictions in figure D.1, by comparing the predicted nonlinear phase shift as a function of driving
strength ratio F0/κ obtained using the nonlinear mean-field theory and the Lindblad quantum master
equation (QME). Results are shown for increasing values of the anharmonicity parameter U/γ1. Mean-field
results coincide well with the QME solution for different values of decay inhomogeneities when both the
anharmonicity and driving strengths are not too high (U/γ < 0.4 and F0/κ∼ 0.2). For larger anharmonicity
and stronger driving, the nonlinear mean field theory can overestimate the phase shift by a factor of a few.

11
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Figure D.1. U−dependent progression of fully quantum validation for the nonlinear phase shift. Relative nonlinear phase shift as
a function of laser strength parameter F0/κ found in the mean-field approximation (solid lines) and by solving the Lindblad
quantum master equation (dashed lines) for different inhomogeneous scenarios and for (a) U/γ1 = 0.2, (b) U/γ1 = 0.4, (c)
U/γ1 = 0.5 and (d) U/γ1 = 1.0. Additional parameters for all panels are {ω0,κ,γ1,

√
Ng}= {40.0,12.0,0.6,1.0} THz.

Appendix E. Photon blockade effect

The photon blockade effect can be characterized by the equal-time second-order correlation function

g(2) (0) =
⟨â†â†ââ⟩
⟨â†â⟩2

, (E1)

which can be calculated numerically by solving the quantum master equation in Lindblad form or
analytically by expanding the wave function of the system in the bare basis as

|ψ (t)⟩=
2∑

ν=0

2∑
n=0

cν,n|ν,n⟩, (E2)

where Pν,n = |cν,n|2 is the population of the corresponding state |ν,n⟩. We truncate the expansion at νmax = 2
and nmax = 2, considering these levels as the last bare states populated in the dynamics. Thus, the equal-time
second-order correlation function in equation (E3) is approximately given by

g(2) (0) =
2(P0,2 + P1,2 + P2,2)

[P0,1 + P1,1 + P2,1 + 2(P0,2 + P1,2 + P2,2)]
2 . (E3)

Figure E.1 shows the equal-time correlation function in equation (E3) as a function of time when the
laser pulse is active. In this time interval (300< t< 900 fs), g(2)(0) has values smaller than one for
F0/κ= 0.2 (blue line), which indicates a photon blockade effect in contrast with the weak driving scenario
F0/κ= 0.01 (black line). Although the reduction of the equal-time second order correlation function is
small, it is sufficient to generate a power-dependent time delay in the FID signal.
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Figure E.1. Equal-time second order correlation function. g(2)(0) function as function of time for laser intensities F0 = 0.01κ
and F0 = 0.20κ by solving the Lindblad quantum master equation for U/γ1 = 1.0 (scenario shows in figure 2). Additional
parameters for all panels are {ω0,κ,γ1,

√
Ng}= {40.0,12.0,0.6,1.0} THz.
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[52] Faraon A, Majumdar A and Vučkovíc J 2010 Phys. Rev. A 81 033838
[53] Birnbaum KM, Boca A, Miller R, Boozer A D, Northup T E and Kimble H J 2005 Nature 436 87
[54] Xiang B, Ribeiro R F, Dunkelberger A D, Wang J, Li Y, Simpkins B S, Owrutsky J C, Yuen-Zhou J and Xiong W 2018 Proc. Natl

Acad. Sci. 115 4845
[55] Herrera F and Owrutsky J 2020 J. Chem. Phys. 152 100902
[56] Grafton A B, Dunkelberger A D, Simpkins B S, Triana J F, Hernández F J, Herrera F and Owrutsky J C 2021 Nat. Commun. 12 214
[57] Kadyan A, Shaji A and George J 2021 J. Phys. Chem. Lett. 12 4313
[58] Wright A D, Nelson J C and Weichman M L 2023 J. Am. Chem. Soc. 145 5982
[59] Menghrajani K S, Chen M, Dholakia K and Barnes W L 2022 Ad. Opt. Mater. 10 2102065
[60] Zaks B, Stehr D, Truong T-A, Petroff P M, Hughes S and Sherwin M S 2011 New J. Phys. 13 083009
[61] Autore M et al 2018 Light: Sci. Appl. 7 17172
[62] Bylinkin A et al 2021 Nat. Photon. 15 197
[63] Muller E A, Pollard B, Bechtel H A, Adato R, Etezadi D, Altug H and Raschke M B 2018 ACS Photonics 5 3594
[64] Xu X G and Raschke M B 2013 Nano Lett. 13 1588
[65] Pollard B, Muller E A, Hinrichs K and Raschke M B 2014 Nat. Commun. 5 3587
[66] Autore M et al 2021 Adv. Opt. Mater. 9 2001958
[67] Huth F, Chuvilin A, Schnell M, Amenabar I, Krutokhvostov R, Lopatin S and Hillenbrand R 2013 Nano Lett. 13 1065
[68] Miller D 1997 Optical physics of quantum wells Quantum Dynamics of Simple Systems 1st edn (Taylor & Francis) pp 239–66
[69] Goulain P, Deimert C, Jeannin M, Pirotta S, Pasek W J, Wasilewski Z, Colombelli R and Manceau J-M 2023 Adv. Opt. Mater.

11 2202724
[70] Fulmer E C, Mukherjee P, Krummel A T and Zanni M T 2004 J. Chem. Phys. 120 8067
[71] Dunkelberger A D, Grafton A B, Vurgaftman I, Soykal O O, Reinecke T L, Davidson R B, Simpkins B S and Owrutsky J C 2019 ACS

Photonics 6 2719
[72] Levine B F 1993 J. Appl. Phys. 74 R1
[73] Mann S A, Nookala N, Johnson S, Mekkawy A, Klem J F, Brener I, Raschke M, Alù A and Belkin M A 2020 Conf. on Lasers and
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